2022 年山东省职业教育教学成果奖推荐书

成 果 名 称 国际邮轮乘务管理专业实训教学基地建设与
应用研究
成果完成人 冯建立、李娜、邹艳艳、郑峰、张伟、吕慧
<u>沈敏、王青葵</u>
成果完成单位
日照远洋运输有限责任公司
上海亚湾酒店管理教职公司
新加坡IICC私人长股有限公司
推荐单位名称及盖章 日照永海工程职业学院
推 荐 时 间 2022 年 1 月 10 日
成果所属类别 高等职业教育实践教学改革
代 码 29903
序 号 ZG7202
编号

山东省教育厅制

	2019 4			200	
	2020 4				
		7 9		: 4	
	202	1 9			
				岗课赛证	E
1.	ı				
					2017
					2019
				202	2019
				202	
1					
					и
п п	"	ш	"		

2		u .
3	" 1+X"	
4		
5		

2				
1			и	
2				
3			и	
4				
5				

3.	1			
	2			
	3			
			1+X	
	4			
4.				

1				
·				
	FI CC			
		467	187	
3		1+X		
4				
5	26			

	1976. 09		
	2001. 05		21
			0633-8672006
			18954193788
	252583173@qq. com		276800
	369	9	
	1. 2011		
	2. 2011		
	3. 2011 " 4. 2013 " 5. 2013 " 6. 2020		11 11
	2	022 1	10

2			
	1980. 6		
	2005. 07		16
			0633-8672320
			13963301942
	178665220@qq. com		276800
	369	9	
1. 2. 3. 进 行	与企 了实训基地的推广和应		基地建设方案。 、跟踪和验收
		2022	1 10

3			
	1992 9		
	2020 4		2
			0633-8672320
			18706480138
	953872042@qq. com		276800
	369	9	
1.			
2 3. 4.			
5.			部鹣趔
		2022	1 10

4			
	1976. 9		
	2006. 5		15
			0633-8672320
			13656339097
	178665220@qq. com		276800
	369	9	
	2016 2016		
真教学系统	的功能开发。		参与仿
			2 Boliza
		2022	1 10

5			
	1984. 5		
	2014. 5		7
			0633-8672099
			15006915549
	178665220@qq. com		276800
	369	9	
			71412
		2022	3 10

6			
	1965. 10		
	1984. 8		37
			0633-8672320
			18663396012
	1251078383@qq. com		276800
	369	9	
			1 10
		2022	1 1 0

(7			
	1993. 10		
	2015. 12		3
	无		
			021-36360858
			13310061929
	sm13818114183@163.com		200072
		456	A305- 306
1. 2. 3.		2022	1 1 0

8			
	1974 11		
	1995 10		无
	无		人力资源部经理
	FICC		13864289279
	及培训		13864289279
	wqkqd@126.com		266000
		;	30
	Ę	Ē	
1. 2. 3.		2022	五楼

三、主要完成单位情况

	一完成 江名称	日照航海工程职业学院	主管部门	山东省教育厅
联	系 人	艾红培	联系电话	15762370857
传	真	0633-8672188	电子信箱	rzhyjwc@126.com
通讯	地址	日照市东港区山海路369 号	邮政编码	276800

主要贡献

日照航海工程职业学院为该成果第一完成单位,从2017年 开始启动研究,在整个基地建设实施过程中,学校整合校内和 企业资源提供充分的人力、技术和财力支持,并自筹200余万 元建设生产性实训基地,与企业共同进行实训基地建设的申报 、项目方案的制定实施、项目总结验收全过程,对国际邮轮专 业人才的培养和实训基地建设进行理论探索,将理论与实践结 合,对建设成果的应用和推广起到了重要作用。

第 (2) 完 成单位名 称	日照远洋运输有限公司 主管部门		山东海事局
联系人	刘加海	联系电话	18663051055
传 真	0633-8672188	电子信箱	178665220@qq.com
通讯地址	日照市山海路369号	邮政编码	276800
主 台的	根据项目的建设目标,牵 开发和实训基地的规划和 术支持。	建设,为项单	

3	上海亚湾酒店管理 有限公司	上海工商局
		13310061929
	021-36360858	sm13818114183 @163. com
	上海静安区永和路 456号A305室	200070

- 1. 实训基地 方案 参与对客服务技能培训模块开发。
- 2. 参与国际邮轮乘务实训基地的使用和推广。
- 3.
- 4. 参与实训基地职业技能培训功能的应用。

4		FICC		
				13864289279
				wqkqd@126.com
		30		266071
]	1. 支持。 2. 参 ⁵	与游轮公司乘务员面试英·	语培训,推	和技术 广实训基地的使用。
			202	2 1 7

四、推荐、评审意见

该成果是在产教融合背景下,将虚拟仿真技术运用至国际 邮轮乘务管理专业教学和校企合作中的一次重要探索。适应国 家战略和数字经济发展要求, 紧盯产业转型升级, 将职业教 育虚拟仿真实训基地打造成集教学、实训、培训、科研、竞 赛、科普等功能于一体的综合性实训基地。

该成果解决了实训教学过程中高投入、高损耗、高风险及 难实施、难观摩、难再现的"三高三难"痛点和难点,有效 服务新时代复合型技术技能人才培养、"双师型"教师队伍 建设、各类人员就业培训以及服务行业企业技术创新等。在 邮轮人才培养中发挥了示范、带动作用,推动了国际邮轮乘务 管理专业人才培养质量和产业发展。

经学校审核,同意推荐申报省级教学成果奖。

见

推

荐

意

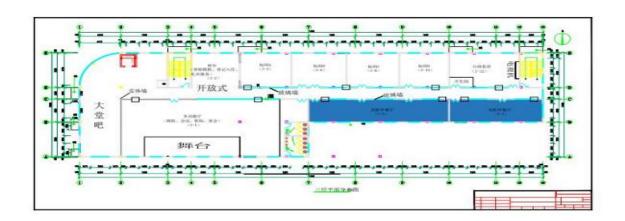
国际邮轮乘务管理专业 实训教学基地建设与应用研究教学成果佐证材料

1.

2

3.

国际邮轮乘务管理专业


实训教学基地建设与应用研究教学成果佐证材料

	8
	. 10
	. 11
高校	
	82
	103
	104
	108
	111
	113
	116
	117
	117
fl cc	118
	119
	120

"

u n

и и и и

и и и и

n u n u n u

п п

 系统应用平台

 设备三维信息展示
 导览介绍
 邮轮场景展示

 课程模拟
 基础模块操作
 流程控制

 模型库访问接口
 类规

 模型库系统
 光照

 基础支撑层

基础软件(操作系统、网络服务)

网络硬件 (服务器,路由器,终端...)

3

" 1+X"

1+X

1 1

467 187

1+X

и п

	`
	FI CC
	2022 1 8
и	u n
2017	2019
	职业教育
	2022 1 8

组织鉴定部门意见:

37110230000

本教学成果,通过运用虚拟仿真实训教学方法和手段,有效探索了产教融合背景下教学实训基地的建设和应用模式,提高了产业升级邮轮乘务专业教学和实训教学效果,使学生专业基本技能与基本素养得到全面提高,成效显著。通过对实训基地的建设和应用,对教学内容、1+X技能等级证书培训和教学方法与手段等方面进行了改革,较成功地探索了国际邮轮乘务管理专业的创新教学模式,在教学、科研、师资队伍建设和国际化高职院校邮轮人才的培养等方面取得突出成绩,向社会和企业输送了大量的优秀对口人才,具有较鲜明的职业教育特色。对高职高专航海类和旅游大类教育改革均具有积极的促进作用。

《国际邮轮乘务管理专业实训教学基地建设与应用研究》教学成果 鉴定委员会经过严肃认真的评审,一致通过同意推荐该成果申报职业教 育省级教学成果奖m

填写人签字:

16 52

2022年1月8日 在鉴定组 鉴定成 现从事 织中担任 工作单位 职称 职务 签字 员姓名 专业领域 的职务 冯建立 组长 日照航海工 教学管理 教授 副院长 No. 程职业学院 成员 刘明传 日照航海工 经济类教学 教授 教师 A) With 程职业学院 郭丰田 成员 日照航海工 航海教育 教授 教师 20 1 PM 程职业学院 王宏亮 成员 日照航海工 科研管理 副教授 副院长 豆包壳 程职业学院 宫 捷 成员 日照航海工 航海教育 副教授 副院长 包搜 程职业学院

3.

3.1 高校

3. 2

3. 3

3. 4

3.5 成果

3. 6

3. 7

2019年山东省民办高校基础能力建设项目拟立项名单

桒源; 川河; 2019-04-04

祀	(英国兴烈)	项目名称	R000001007FB	院校名称
1	力学条件建设类	化学工程与工艺专业实验室建设	12332	烟台南山学院
2	力学条件建设装	立定应用型本科,面向新旧动物的领格制造业材料分析检测实验室建设	12843	潍坊科技学院
	办学条件建设类	新能源智能汽车技术实验实训中心	13006	山东东才学院
4	力学条件建设类	医学检验与模拟产房实验室建设	13324	山东协和学院
5	力学条件建设资	錯誤物联网与智智软件综合实训中心建设	13995	青岛工学院
5	力学条件建设类	现代信息技术综合实验中心建设项目	13874	山东外山麓译取沙学
7.	办学条件建设类	实验实训综合条件改善项目	12070	曲阜迈东科技学院
3	力学怎件建设货	新能源汽车技术理实一体化交训空建设	1.3.3.21	青岛术实职业技术学
1	办学条件建设类	- 老年医养李训中心 	13388	潍坊工商职业学院
0	力学条件建设类	仿真豪华邮轮实训中心	14605	日照航海工程职业学
1	教师专业交惠和信息化建设实	基丁位實化校园的课程数字资源建设	10825	并基础的字标。
2	教师专业发展和信息化建设美	数字教育资源建设	12332	烟台南山学院
3.	数师专业发展和信息化建设美	智慧校园综合服务与运营监管平台建设	13006	山东东才学院
4	教师专业发展和信息化建设设	学分制背景下在现开放课程资源及条件保险建设	13320	青岛西河学院。
5	数师专业发展和信息化建设类	山东协和学院智慧云教室建设	13324	山东协和学院
16	数师专业发展和信息化建设美	数学环境提升工程项目	13857	山东军主工学院

3. 2

关于公示日照市2020年重点实验室拟组建名单的通知

2020-04-01 13:45:22 ▲ 投稿人:那一城 ● 围观:1008 次 ● 0 评论

各有关单位:

根据《日照市重点实验室管理暂行办法》(日科字〔2018〕13号)规定,经依托单位申请,主管部门推荐,专家评审以及现场核实,现将日照市2020年重点实验室拟组建名单(详见附件)予以公示,公示期5个工作日。

单位和个人如有异议,请于公示期内提交书面材料,署明真实姓名和联系方式,单位提交材料加盖所在单位公章,逾期不予受理。

联系电话: 0633-8785728

联系地址: 日照市济宁路369号人防大厦902房间 市科技局高新科

附件: 日照市2020年重点实验室拟组建名单

日照市2020年重点实验室拟组建名单

序号	实验室 名称	依托維位	主管部门	实验意类型
1	日然市康复与护理智能机器人 重点实验室	台早师范大学工学院	市科技局	学科重点实验室
2	日照市精准医学重点实验室	日際市人民医院	市科技局	学科重点实验室
3	日照市芸術教培与加工重想实 絵章	日照市茶叶科学研究所	市科技局	学科重点实验室
4	日期市仿真豪华游轮重点实验	日際航海工程职业学院	市科技局	学科重点实验室
5	日期市共展取場技术上乙工程 重点業務室	方意科技有限公司	东港科技 局	企业整点实验室
6	日照市像塑材料重点实验室	山东东都汽车部件股份有限公司	萬县科技 局	企业整点实验室
7	日報市煤化工节能环保重点实 验室	山东港宇能源有限公司	芭袋科技 局	企业重点实验室
8	日照市智慧城市大数据重点实 验室	確光云计算技术(日照)有 限公司	芭县科技 局	企业重点工验室
9	日照市优质鸡育种重点实验室	山东纪华家南晋种有限公司	高县科技 尼	企业里点实验室
10	日照市海洋烧备智能化液压油 虹重点实验室	山东万遇液压股份有限公司	五莲科技局	企业重点实验室

日照市重点实验室建设计划任务书

实验室名称: <u>日照市仿真豪华邮轮重点实验室</u>
研究领域: 高技术服务业
依托单位 (盖章):
主管部门 (盖章): 日照市科技局
通讯地址: 日照市东港区山海路 369 号
联 系 人:
联系电话:0633-8672006
传 真:0633-8672188
电子邮箱: rzkyc@rzmevc.com
填报日期: 2020年4月15日

日照市科学技术局 二〇二〇年制

日照航海工程职业学院

2019 4 1

23 1200 23

24

1 "

"

11 II II II II II

200

32% 50% " "

и

" " GMDSS

5 AIS()/GPS() /

GNDSS (360) 20 2019 1 AIS()/GPS(360 GNDSS (20 360° 2 2 3 23 4

и и и и

1 " 1+X" " 1" " X"

VR AR AI

1 " " " "

и и и и

(6) 1+X

PPT

3D

3

2000

SPA

2021 4 - 2021 6

1

2021 6 - 2021 10

500

3-6

400

SPA

150 AR

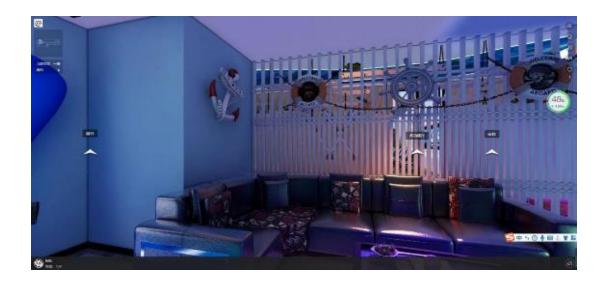
360°

2022 7 - 2022 12

3-5

1		
2	4	
3	2 4	

1			
2			
3			
4	4	8-10	
5		8 1	

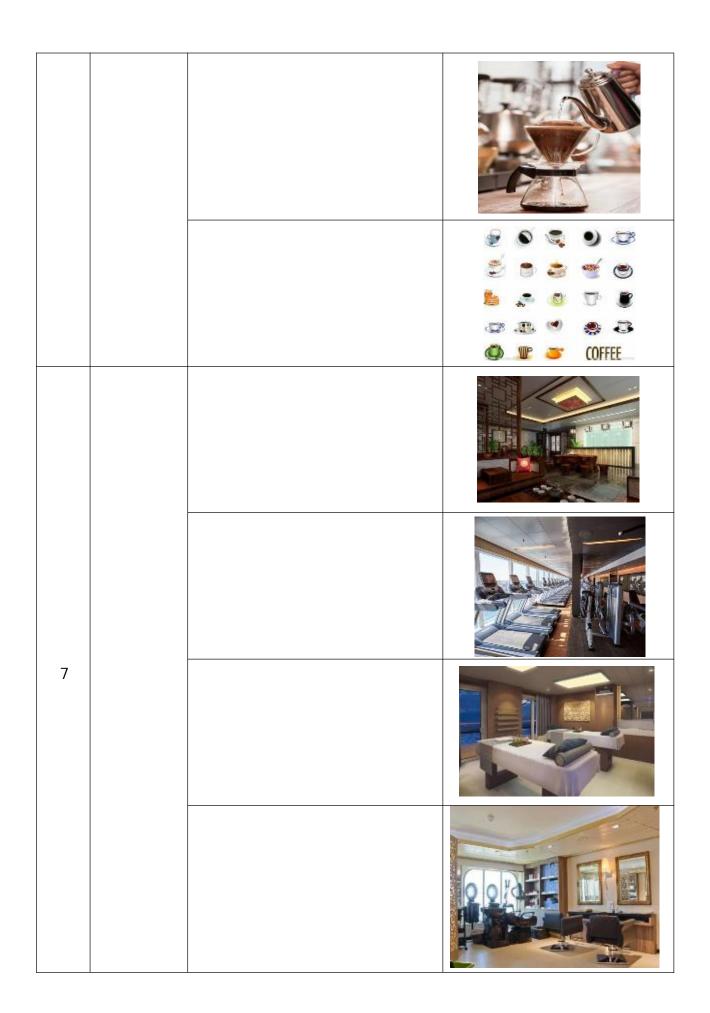

1	2	4	6	
2		2 1		

1			
2	4		
3	2	4	

1	1. 2*2	2	
2	1. 5*2 1. 8*2 2*2		
3			
4			10 20

и и

1	90	1. 2	30	


			WWW. Facilities
		2 1. 2 0. 9 30cm	7
		2	
2	2	1	
		2	
		Opera	DELEGATION CONTROL OF THE PROPERTY OF THE PROP

	10 10 10 10 10 10 10 10	i e
	2 2 2 POS 1 2	
3	pad 5	
3	THEN THE SER SER	
	1.6 0.4 0.9	

	6			
	6			
	4			
				Twent Control of the
4				
	1. 6	40	90	
	8-10	1. 8		THE DASISMO
	1			

	10				
			1	4	
	2 1 2 2	45 2 1	30	2	
5	2	45		2	
					(45.米) (45.米) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7

6	50	2	1. 2	
	1			

.

LED VR PC

" " " " 3

3. 1

VR PC

3. 2

3. 3

3. 4

3. 5

3. 51

a) 3D

b)

3. 52

a)

b) c)

d)

3. 534 5

3D

a) b) " " "

C)

и п

d) VR

и и и

e)

f) VR

支 几

3. 54

a)

b) 3 15

c)

3. 55

a)

3

b)

c) 15

1-1. 5

: " × × ×

××× ××× ××× ······ × "

" / × × × "

....."

d)

第46页

e)

3. 56

a) 15 25

b)

c) 10 40

d)

3. 57

a

b

С

Sui te

1. S — 30-37

2 PS — 33-45

1.

24

2

24

1. Ccean Vi ew Cabi n —— 14

1 EC

2 EP

2 Bal cony Cabi n — 19

1 BC

2 BP

2-4

1-2

24

I nsi de Cabi n —— 11 1.

I C

2 IP

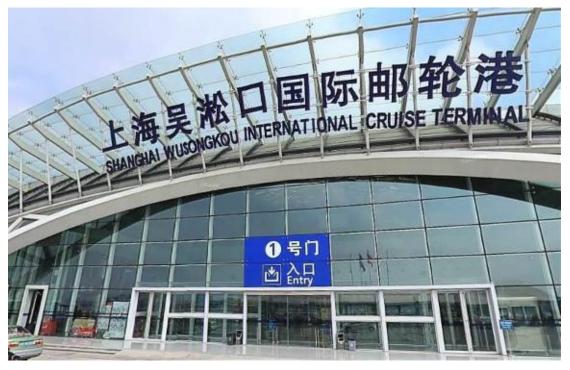
d

3. 58

a) 3D

5 3D

b)


VR

4. 1

VR

4. 2

3D

4. 4

3D

6 5 pos

4. 6

3 15 1 10 10

4 3D

4. 8

		1. CPU	Xeon E-2176G					
		2	DDR4 2666 2x16GE	3;				
		3.		3				
		4.	8GE	3				
1		5.	288	3GB/S				
		6.	2	2304				
		7.		76	30* 4320			
		8.	256Gssd+1Thhd					
		9.						
		1.	16: 9					
	LED	2	1920*1080					
2	LED	3.	DP 1.2(HD	XP)	, 2 USB	ı		
		4.	500 1					
		5.	LED					
		1						
		2	2					
		3				LED		
				4				
		4				398		2400
		5				120H	<u>/</u>	
			8ms			0	00	
		6				3mm	88	
		9m						
3		7						
		8						100
		O		64		C	x9	Iω
		9		04	INU	7	Α 7	
					1100			
		10	6					
			J					
		11						
		12						

	Π	
4		13 1
		11 6 12 13 3D 3D 3D
5	LEC	1. 2.5mm 16 2. Hz 2880 3. Hz 120 4. 3D 6. 7. 1. ni t 800 2. 3000-9600K 3. 1/32 4. bi t 14
		5. 5000: 1 6 97%

```
7.
                       Cx Cy 0.003
                / ± 140° /± 140°
       8.
                H 80000
       1. 7
                                               LED
                             8
       3. 2D 3D
                                               PC/X86/X64
                           304
                                         160
                                            2T
       4.
4KVR
              HDM12.0 DP1.2 4K@60Hz
                             HDCP 2.2; DL-DVI DP 2 DP 4K@30Hz VESA 3D
       3840x2160@60Hz
       4K@30Hz ;
              HDM11.4 HDbaseT 4K@30Hz
               DL-DVI HDMI HDbaseT 4K@ 30Hz
              SDI HDMI VGA CVBS YPbPr IP DVI HDBaseT
        DVI - M
                                   HDMI/DVI/VGA/YPbPr/Cvbs
               3GSDI 60Hz
                                  DVI HDMI VGA Dual-linkDVI SDI
       HDBaseT
                    4K 4K HD SD
       5.
                 1920x1200@120Hz 3840x1200@120Hz
                     8K-16K
                                          8K-16K
       6.
       7.
                                                  VESA BNC 3D
                      Nvidia 3D vision DLP link IR
       8.
                        2
       1.
                                                256
       3.
                           <3s
                                           <20s
                      <16ms
```

```
6.
                             <160ms
           7.
                  4: 4: 4
                     60Hz
           2.
                  LCD/DLP
           3.
           4.
                                                0-360
           5.
           6.
           7.
           8.
                                                                   EDI D
                                           4096x 4096
           1921x1080),
                                  ΙP
           1.
                     B/S C/S
           5.
                      N+1
                                            8U
                   2. 45G+-500NHz
  3D
7
           2
                      O. 1WNAX
           3.
                                  25m
                                              36% TYP. 96-144Hz
            1000 1
                                             3. 7V
           3.
                        35
  3D
           4.
                        2.5
           5.
                                          25m
                                          - 30 ~70
           6.
                                0 ~50
           1.
                       120W
           2.4K
                          50/60Hz YCbCr=4: 2: 0, HDR, HDCP2 2
9
           3.
                       5. 1
                       100-199W
```

		5. DT:	5
10	LEC	1. 2	
11	VR	1. 2048; 2 3. 4. ; 5. ; 6. 7.	; ; EDI D ;
		; 8. 9. 10. ; 11.	; Windows Android IPAD; 2D 3D 2D PPT 3D

1. 2 QuadBuffer 3DVi si on 3. VRPN 4. " 1 N'	
3. VRPN	
3. VRPN	
3. VRPN	
4. " 1 N'	
4. " 1 N'	
5. Unity VR	
	LEO
PC	HTC
Vi ve Vi/ndovs MR	
6. Unity SDK API	
Demon Demon III	VR
VR	
DEMO	
8. VR	
LED	
9.	
10.	
11.	
12	
10nt 10m	
13. 1	
	PC
I LED VR	
LED VR	
LED VR	
	2
1.	2
	2
1.	2
1.	2
1.	2
1.	2
1.	2
1.	2
1.	2
1.	2

	4.				
	5.				
				PPT	
	a)				
	b)	PPT		PPT	
	c)				
	5. 1				
	a)			:	3D
	b)				
	5. 2				
	a)				
	b)				
	c)				
	d)				
	5. 3				
			4 5		

	3D	
a)		
		и п
"		
6)		
C)		
и	п и п	
d)	VR	
	и и	и и
e)		
f)	VR	
		支 几
5. 4		
a)		
b)	3	15
1		
c)		
c)		
	a) b) (c) (d) (e) (f) 5. 4	c) """ d) VR """ e) f) VR

	5. 5										
	a)		3								
	b)										
	C)		и	10						u	n
	d) "	n	И	и	и	Π		и	n	и	II
	e) 5. 6					И	n				
	a)	25							15		

	b)					
	c)			1	10	
				'		40
						40
	d)					
	5. 7					
				Ul		
	a)					
	b)					
	c)					
	5. 8					
	a)		3D			
			OD			
		3D				
	3	SD				
	1.3					
	b)					
14	1.	21. 5				
	2	16: 9				
	3.	1920x1080				
	4.	1000: 1				

```
LED
          5.
          6.
                HDCP
          1. CPU | 17 7700(4 8 3. 6GHZ 4. 2GHZ)
                 DDR4 2400 16GB
                    GTX1060
                 1T 7200
                                SATA II
           5.
                 2 3.5 AMOLED 2
                                                    1440 x 1600
               3K 2880 x 1600
                  60/90Hz
                   110
          5.
                   360°
          6.
          7.
          8.
                I PD
           1.
          2
                    12
                                                                    VR
                       VR
                                                       VR
                              VR
           3.
           4.
                                    VR
          5.
                                               VR
                                                          VR
             VR
          6. 25.
               30
                             360
                  flash
                   web
                               PC VR
          8.
15
                                                   C/S B/S
          9.
          10.
                                     VR
          11.
                 Unity3D Unreal
           12
               VR
                            Vi/Indovs MR HTC VI VE LED
           14.
          15.
                                                 PC VR
```

	16		
	17.		VR
	18		
	19.		
	20.		
	21.		
	22.	8	
	23. VR		VR
	24.	₩n7/10 64	

1. 1				
	1. ± 0.000			
1. 1. 1	2 1: 3 2 5- 3. 5 3.	11. 80	950.00	11210. 00
1. 1. 2		11. 80	450.00	5310.00
1. 1. 3		29. 60	550.00	16280.00
1. 1. 4		13. 80	450.00	6210.00
1. 1. 5		105.00	185.00	19425. 00
				58435.00
1. 2				
1. 2 1		18. 50	485.00	8972. 50
1. 2. 2		5. 00	1850.00	9250. 00
				18222. 50
1. 3				
1. 3. 1		91. 20	95.00	8664.00
				8664.00
1. 4				
1. 4. 1		6.80	850.00	5780.00
1. 4. 2		30.00	85. 00	2550.00
				8330. 00
1. 5				
1. 5. 1		1. 00	5300.00	5300. 00
1. 5. 2		2 00	1250.00	2500. 00
1. 5. 3		30.00	185.00	5550.00
				13350.00
1. 6				
1. 6. 1		1. 00	5300.00	5300. 00
1. 6. 2		4. 00	1250.00	5000.00

1. 6. 3		54. 00	165.00	8910.00
				19210.00
1. 7				
1. 7. 1		51. 60	280.00	14448.00
1. 7. 2		1. 00	7800.00	7800. 00
1. 7. 3		1. 00	6300.00	6300.00
1. 7. 4		4. 00	1300.00	5200.00
1. 7. 5		35. 00	185.00	6475. 00
				40223.00
1. 8				
1. 8 1		45. 00	185.00	8325. 00
				8325. 00
1. 9				
1. 9. 1		27. 00	175.00	4725. 00
1. 9. 2		31. 50	185.00	5827. 50
				10552.50
1. 10				
1. 10. 1		9. 50	165.00	1567. 50
				1567. 50
1. 11				
1. 11. 1		22. 00	165.00	3630. 00
				3630.00
1. 12				
1. 12 1		22. 00	165.00	3630. 00
	·			3630.00
				194, 140

1. 1					
1. 1. 1	1. 2. 3. 3	3	332 20	28.00	9301. 60
1. 1. 2	1. 2. 3. 3	3	270. 00	28.00	7560. 00
1. 1. 3	1. 2	1	254. 00	17. 00	4318.00
1. 1. 4	1. 2.8m 2.9mm 3. 50 50*19U		55. 00	155. 00	8525. 00
1. 1. 5	1. 2.8m 2.9mm 3. 50 50*19U		57. 00	125. 00	7125. 00
1. 1. 6	1. 2.8m 2.9mm 3. 50 50*19U		92.00	180.00	16560. 00
1. 1. 7	1. 2.8m 2 3. 50		180. 20	98. 50	17749. 70

							1
	1. 2. 25*	*35	450*12	200nm			
1. 1. 8		800mm			21.00	185.00	3885.00
	1000mm						
	3.						
1. 1. 9	1.				4. 90	195. 00	955. 50
1 1 10	2.				21 10	2/0.00	E40(00
1. 1. 10	4				21. 10	260.00	5486.00
	1.		± (). 000			
1. 1. 11	2 1: 3				352.10	155.00	54575. 50
	2.5-3.5	0 F					
1. 1. 12	3. 1 0.4	-0.5			196. 00	13. 00	2548. 00
1. 1. 12	1				190.W	13. W	2040. W
	1. 2.	300* 200	1				
1. 1. 13		18			32. 30	82.00	2648. 60
1. 1. 13	9. 5mm	10	(1	32. 30	62. W	2040. 00
	2. 311111			3			
				<u> </u>			141237. 90
							1141237. 70
1. 2							
1. 2	1.						
1. 2	1. 2						
				1	54.00	00.00	4540.00
1. 2				1 3.	54. 00	28 00	1512 œ
					54. 00	28.00	1512 00
	2	3			54. 00	28. 00	1512 00
	2	3			54. 00	28.00	1512 00
	3	3			54. 00	28.00	1512 00
1. 2 1	3	3					
	3	3		3.	54. 00 55. 20		1512 00 1545. 60
1. 2 1	3	3		3.			
1. 2 1	2 3 1. 2	3		3.			
1. 2 1	2 3 1. 2			3.			
1. 2 1	2 3 1. 2			3.	55. 20	28.00	1545. 60
1. 2 1	2 3 1. 2			3.		28.00	
1. 2 1	2 3 1. 2			1 3.	55. 20	28.00	1545. 60
1. 2 1	2 3 1. 2	3		1 3.	55. 20	28.00	1545. 60
1. 2 1	2 3 1. 2 3	2.8m		1 3.	55. 20 21. 10	28. 00	1545. 60 1624. 70
1. 2 1	2 3 1. 2 3 1. 2 9mm	2.8m		1 3.	55. 20	28. 00	1545. 60

	FOMOL			
	50*19U			
1. 2 5	1. 2	21. 10	195. 00	4114. 50
1. 2 7	1. ± 0.000 2 1: 3 2 5- 3. 5 3. 1 0.4-0.5	54. 00	155. 00	8370.00
1. 2 8	1. 2	54. 00	295. 00	15930. 00
1. 2 9		21. 10	13.00	274. 30
1. 2 10	1. 2 300*200 3. 30*40 18mm 9. 5mm 1 2 3	5. 00	82 00	410.00
				37406. 10
1. 3				
1. 3. 1	1. 2 1 3 3	234. 00	28. 00	6552 00
1. 3. 2	1. 2 1 3 3	132 00	28.00	36% 00
1. 3. 3	 2. 8m 9mm 50*19U 	79. 30	125. 00	9912 50
1. 3. 4	1. 2.8m 2 9mm 3. 50 50*19U	218.00		23980.00
1. 3. 5		84. 00		23940. 00
1. 3. 6	1 2cm	234. 00		20872. 80
1. 3. 7		79. 00	13.00	1027. 00

1. 3. 8	1. 2. 300*200 3. 30*40 18mm 9. 5mm 1 2 3	31. 00	82.00	2542 00
				92522. 30
1. 4				
1. 4. 1	1. 2 1 3 3	77. 00	28 00	2156.00
1. 4. 2	1. ± 0.000 2 1: 3 2 5-3 5 3 1 0 4-0 5	73. 00	155. 00	11315.00
1. 4. 3	1. ± 0.000 2 1: 3 2 5- 3. 5 3. 1 0.4-0.5	7. 30	155. 00	1131. 50
1. 4. 4	1. 2.8m 2. 9mm 3. 50 50*19U	79. 30	155.00	12291. 50
1. 4. 5	1. 2.8m 2 9mm 3. 50 50*19U	77. 00	110.00	8470.00
1. 4. 6	1. 2. 25*35 450*1200nm 800nm 1000nm 3.	21. 00	185.00	3885. 00
1. 4. 7		30.00	285. 00	8550. CO
1. 4. 8	1 2cm	77. 00	89. 20	6868. 40
1. 4. 9		36.00	13.00	468.00

1. 4. 10	1. 2. 300*200 3. 30*40 18mm 9. 5mm 1 2 3	31. 00 82. 00	2542 00 57677. 40
1 5			5/6/7. 40
1. 5			
1. 5. 1	1. 2 1 3. 3	65.00 28.00	1820. 00
1. 5. 2	1. 2 1 3. 3	37. 00 65. 00	2405. 00
1. 5. 3	1. 2.8m 2.9mm 3. 50 50*19U	38.00 125.00	4750.00
1. 5. 4	1. ± 0.000 2 1: 3 2 5- 3 5 3. 1 0.4-0.5	65. 00 155. 00	10075. 00
1. 5. 5		38.00 13.00	494. 00
1. 5. 6		42. 10 285. 00	11998. 50
1. 5. 7	1. 2. 300*200 3. 30*40 18mm 9. 5mm 1 2 3	28.00 82.00	2296. 00
			33838. 50
1. 6			
1. 6. 1	1. 2 1 3. 3	105.00 28.00	2940. 00

1. 6. 2	1. 2		1	7	75. 20	77. 00	5790. 40
1. 6 3		2.8m 9mm 50 VU		10	05. 00	165.00	17325. 00
1. 6. 4	1. 2 1: 3 2 5- 3 3. 1		± 0.000	10	05. 00	155. 00	16275.00
1. 6. 5				6	3. 20	285.00	18012.00
1. 6. 6				5	53. 00		689. 00
1. 6 7	1. 2 3. 30* 9. 5mr	300*200 40 18mm n 2	1		12. 20	82 00	3460. 40
							64491. 80
1. 7							
1. 7. 1	1. 2		1	20	95. 40		
	3	3	3.		7 0. 40	28. 00	8271. 20
1. 7. 2	1. 2.	3	1		75. 20		8271. 20 5790. 40
1. 7. 2	1.	2. 8m 9mm 50		7		77. 00	
	1. 2 1. 2 3.	2. 8m 9mm 50		2:	7 5. 2 0	77. 00	5790. 40
1. 7. 3	1. 2. 1. 2. 3. 50*19	2. 8m 9mm 50	1	2:	75. 20 35. 00	77. 00 145. 00	5790. 40 34075. 00

		1. 2. 25*35 450*1200nm			
1. 7. 7		800nm	24. 00	185. 00	4440.00
		1000			
		1000nm 3.			
1. 7. 8		1.	19. 60	185. 00	3626.00
1. 7. 9			62.00	13. 00	806. 00
		1.			
		2. 300*200			
1. 7. 10		3. 30* 40 18mm	42. 20	82.00	3460. 40
		9. 5mm 1			
		2 3			
					95659. 40
1. 8	*3				
1. 8 1			107. 00	155. 00	16585. 00
		1. ± 0.000			
1. 8. 2		2. 1: 3	124. 70	135.00	16834. 50
1. 0. 2	300*600	2 5-3 5	124. 70	133.00	10034. 30
		3. 1 0.4-0.5			
		1. ± 0.000			
1. 8. 3		2 1: 3	107. 00	135.00	14445. 00
	300* 300	2 5-3 5			
1.0.4		3. 1 0.4-0.5		050.00	4050.00
1. 8. 4			5.00		4250.00
1. 8. 5			5. 00		1850. 00
1. 8. 6		1	45. 00	15. 00	675. 00
1. 8. 7		1. 2 TOTO	5. 00	350.00	1750.00
1. 8. 8		TOTO	4. 00	680. 00	2720.00
1. 8. 9		ТОТО	15. 00		12750. 00
1. 8 10		ТОТО	1. 00		2200.00
1. 8 11			3. 00		690. 00
1. 8. 12			5. 00	65. 00	325. 00
1. 8. 13		1. 2	65. 00	195	12675. 00
1. 8 14		TS	186. 40	45. 00	8388. 00
					96137. 50

1. 9					
1. /		1			
		1. 2			
		1			
1. 9. 1		3.	381.00	28.00	10668.00
		3			
		3			
		1. 2. 8m			
1. 9. 2		2 9mm	106.00	155.00	16430.00
		3. 50			
		50*19U			
1. 9. 3		1. 2	4. 90	195.00	955. 50
		1. ± 0.000			
		2 1: 3			
1. 9. 4		2 5-3 5	140.00	155.00	21700.00
		3. 1 0.4-0.5			
1. 9. 5			91. 50	13.00	1189. 50
		1.			
		2. 300*200			
1. 9. 6		3. 30*40 18mm	8. 40	82.00	688. 80
		9. 5mm 1			
		2 3			E4 (04 00
					51631. 80
1. 1					
		1.			
		2			
1. 10. 1		1	284. 00	28.00	7952.00
		3.			
		3			
		3			
1. 10. 2			209. 00	45. 00	9405. 00
			25% 55	.5. 50	.55, 55
1. 10. 3			209. 00	115. 00	24035.00
1. 10. 4			95. 20		12376.00
1. 10. 5			62.00	13.00	806.00
		1.			
		2. 300*200			
1. 10. 6		3. 30* 40 18mm	42. 20	82.00	3460. 40
		9. 5mm 1			
	1	2 3			1

				58034. 40
1. 11				
1. 11. 1	1. 2 1 3. 3	189. 20	28.00	5297. 60
1. 11. 2	1. 2 1 3 3	110. 20	65. 00	7163. 00
1. 11. 3	1. 2.8m 2.9mm 3. 50 50*19U	129. 00	128.00	16512 00
1. 11. 4	1. 2.8m 2. 9mm 3. 50 50*19U	95. 00	125. 00	11875. 00
1. 11. 5	1. 2. 8m 2 3. 50	44. 00	98. 50	4334. 00
1. 11. 6	1. 2. 25*35 450*1200mm 800mm 1000mm 3.	21.00	185. 00	3885. 00
1. 11. 7		189. 00	155.00	29295. 00
1. 11. 8		54. 00	285.00	15390.00
1. 11. 9		55. 00	13.00	715. 00
1. 11. 10	1. 2. 300*200 3. 30*40 18mm 9. 5mm 1 2 3	21.00	82 00	1722 00
·	,			96188. 60

1. 12				
1. 12 1	1. 2 1 3 3	37. 00	28. 00	1036. 00
1. 12. 2	1. 2 3. 3	25. 00	65. 00	1625. 00
1. 12 3	1. 2.8m 2 9mm 3. 50 50*19U	37. 00	128.00	4736. 00
1. 12. 4	1. 2.8m 2.9mm 3.50 50*19U	24. 00	125. 00	3000. 00
1. 12 5	1. 2. 25*35 450*1200mm 800mm 1000mm 3.	13. 20	185. 00	2442 00
1. 12 6		37. 00	155. 00	5735. 00
1. 12. 7		8. 20	285. 00	2337. 00
1. 12. 8		24. 00	13.00	312 00
1. 12. 9	1. 2. 300*200 3. 30*40 18mm 9. 5mm 1 2 3	21. 00	82 00	1722 00
				22945.00
1. 13				

1. 13. 1	1. 2 3. 3 3	89. 60	28 00	2508. 80
1. 13. 2	1. 2.8m 2. 9mm 3. 50 50*19U	51.00	128.00	6528.00
1. 13. 3	1. 2.8m 2 9mm 3. 50 50*19U	28. 40	125. 00	3550. 00
1. 13. 4		51.00	155.00	7905. 00
1. 13. 5		16. 20	285. 00	4617. OO
1. 13. 6		28. 40		369. 20
1. 13. 7	1. 2. 300*200 3. 30*40 18mm 9. 5mm 1 2 3	7. 90	82.00	647. 80
				26125.80
1. 14				
1. 14. 1	1. 2 3. 3 3	125. 90	28.00	3525. 20
1				
1. 14. 2	1. 2 1 3 3	42. 70	65. 00	2775. 50
1. 14. 2	2 1 3.	42. 70 123. 00		2775. 50 13530. 00

	2. 9mm				
	3. 50				
	50*19U				
	1.				
	2. 25*35 450*1200nm				
1. 14. 5	800nm		24. 00	185. 00	4440 M
1. 1 1. 0	COO IIII I		21.00	100.00	1110.00
	1000nmn				
	3.				
1. 14. 6	j.3.		51. 00	155. 00	7905. 00
1. 14. 7			38. 20	285. 00	10887. 00
1. 14. 8			49. 00	13. 00	637. 00
	1.				
	2. 300*200				
1. 14. 9	3. 30* 40 18mm		14. 20	82.00	1164. 40
	9. 5mm	1			
	2 3				
		·			50989. 10
2					
2.1					
21	1 1				
2 1. 1	1. AL		6.00	1500.00	9000.00
2 1. 1	2		6.00	1500. 00	9000.00
2 1. 1	2 1. ALE		6 00	1500. 00 4500. 00	
	2 1. ALE 2				
2 1. 2	2 1. ALE 2 1.		2 00	4500. 00	9000. 00
	2 1. ALE 2				
2 1. 2	2 1. ALE 2 1.		2 00	4500. 00 79. 00	9000.00
2 1. 2	2 1. ALE 2 1. 2		2 00	4500. 00 79. 00	9000. 00
2 1. 2 2 1. 3 2 1. 4	2 1. ALE 2 1. 2 1. 2		2 00 2121. 60 2121. 60	4500.00 79.00 10.00	9000. 00 167606. 40 21216. 00
2 1. 2	2 1. ALE 2 1. 2 1. 2 1. 2		2 00	4500. 00 79. 00	9000. 00 167606. 40 21216. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5	2 1. ALE 2 1. 2 1. 2 1. 2 1. 2 1. RW- 0. 5		2 00 2121. 60 2121. 60 0. 00	4500. 00 79. 00 10. 00 150. 00	9000. 00 167606. 40 21216. 00 0. 00
2 1. 2 2 1. 3 2 1. 4	2 1. ALE 2 1. 2 1. 2 1. 2 1. 2 1. 2		2 00 2121. 60 2121. 60	4500. 00 79. 00 10. 00 150. 00	9000. 00 167606. 40 21216. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5	2 1. ALE 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. RW- 0. 5 2 1.		2 00 2121. 60 2121. 60 0. 00	4500. 00 79. 00 10. 00 150. 00	9000. 00 167606. 40 21216. 00 0. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6	2 1. ALE 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. RW- 0. 5 2 1.		2 00 2121. 60 2121. 60 0. 00	4500. 00 79. 00 10. 00 150. 00	9000. 00 167606. 40 21216. 00 0. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5	2 1. ALE 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 2 1. 2 2		2 00 2121. 60 2121. 60 0. 00	4500. 00 79. 00 10. 00 150. 00	9000. 00 167606. 40 21216. 00 0. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6	2 1. ALE 2 1. 2 1. 2 1. 2 1. RW-0.5 2 1. 2 1. 2		2 00 2121. 60 2121. 60 0 00 0 00	4500. 00 79. 00 10. 00 150. 00	9000. 00 167606. 40 21216. 00 0. 00 0. 00 206822. 40
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6	2 1. ALE 2 1. 2 1. 2 1. 2 1. RW- 0. 5 2 1. 2 1. 2 1. 2 1. 2		2 00 2121. 60 2121. 60 0. 00	4500. 00 79. 00 10. 00 150. 00	9000. 00 167606. 40 21216. 00 0. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6	2 1. ALE 2 1. 2 1. 2 1. 2 1. RW-0.5 2 1. 2 1. 2		2 00 2121. 60 2121. 60 0. 00 0. 00	4500. 00 79. 00 10. 00 150. 00 10. 00	9000. 00 167606. 40 21216. 00 0. 00 0. 00 206822. 40 10920. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6	2 1. ALE 2 1. 2 1. 2 1. 2 1. RW- 0. 5 2 1. 2 1. 2 1. 2 1. 2		2 00 2121. 60 2121. 60 0 00 0 00	4500. 00 79. 00 10. 00 150. 00 10. 00	9000. 00 167606. 40 21216. 00 0. 00 0. 00 206822. 40
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6	2 1. ALE 2 1. 2 1. 2 1. 2 1. RW- 0. 5 2 1. 2 1. 2 1. 2 1. 2		2 00 2121. 60 2121. 60 0. 00 0. 00	4500. 00 79. 00 10. 00 150. 00 10. 00	9000. 00 167606. 40 21216. 00 0. 00 0. 00 206822. 40 10920. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6	2 1. ALE 2 1. 2 1. 2 1. 2 1. RW- 0. 5 2 1. 2 1. 2 1. 2 1. 2		2 00 2121. 60 2121. 60 0. 00 0. 00	4500. 00 79. 00 10. 00 150. 00 10. 00	9000. 00 167606. 40 21216. 00 0. 00 0. 00 206822. 40 10920. 00 440. 00
2 1. 2 2 1. 3 2 1. 4 2 1. 5 2 1. 6 2 2 2 2 1 2 2 2	2 1. ALE 2 1. 2 1. 2 1. 2 1. RW- 0. 5 2 1. 2 1. 2 1. 2 1. 2		2 00 2121. 60 2121. 60 0. 00 0. 00	4500. 00 79. 00 10. 00 150. 00 10. 00	9000. 00 167606. 40 21216. 00 0. 00 0. 00 206822. 40 10920. 00 440. 00

3. 1. 1			45. 00	850	38250.00
3. 1. 1	LED		28. 00	165	4620.00
3. 1. 2	LED		1355. 20	23	31169. 60
3. 1. 3			210.00	55	11550.00
3. 1. 4			35. 00	75	2625.00
3. 1. 5			45. 00	35	1575. 00
3. 1. 6			125.00	28	3500.00
3. 1. 7			5. 00	165	825.00
3. 1. 8			30.00	3	90.00
					94204. 60
		1, 237, 273			

日照航海工程职业学院

2020-10

2019 " 20 " 1+X

1. 1

1+X

2015 10 "

2018 11 6 2+4

13.5 Vista 2019 10 18

2020 1 11

2008 2009

u u

 2008
 2015
 40
 2.85

 111.2
 28
 539

 20
 40%
 2030

1:2

1. 2

1000

1. 3 1+X
2020 1 22
1+X
1+X

1+X

2 1

1)

" 1" " X"

2)

1)

1+X

2)

3.

1) 1+X

2) 1+X

3)

4)

4.

1

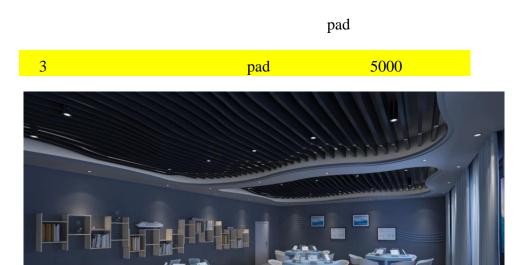
2

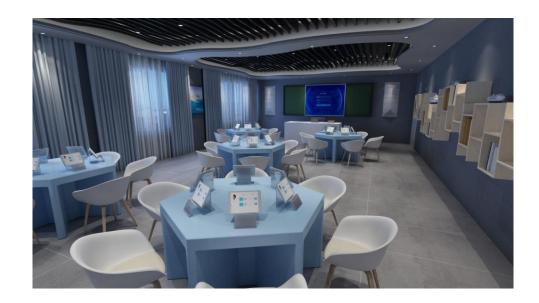
1		50
1		50
2		70
3		100

1

4. 1

1


VR



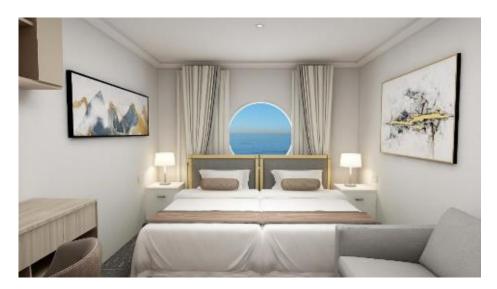
01	O1-1	(01-1-1)	1 50-1 150 2-5	

4. 2

	5	
02-1		

 _			
02-2			
1	I	1	

```
1.
2.
3.
4.
5.
                         PDF 3D
6.
7.
8.
9.
10.
                VUE+ ASP. NET
1.
2
3.
4.
         B/S
5.
6.
7.
8.
9.
10.
11.
12
           DCS
13.
                                W€B
              SQL
                                                            COOKI E
14.
15.
```


1.				
2				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12				
13.				
14.		Fyeel		
15.		Excel		
16. 17.				
18.				
19.	/			
20.	·			
21.				
22.				
1.	B/S			
2				
1.				
2				
3.				
4.				

```
5.
6.

1. Androi d +Web
2
3.
1.
2
3.
" "
4.
5.
6.
7.
```

4. 3

		1	
		2	
		3	1
	02-1	4	
02			
		VM.S	
			1
			1
	02-2		1
	02-2		1
	02-2		1
	02-2	1.	1
	02-2	1.	1

2.	2	
1. 1-1. 2	1. 8-1. 9	1
:		
	: 20 nm	
	: 20mm	1 2*2
		1. 2 2
	2*2 3	_
48* 74		1
	32	2
		2
3.		
J.		
1	1	
1	1	
	AC220V	
	DX	C110V
4.		
)o	2.2
3UKPa-2UUKF	Pa e=1.	J- J

4.4 航海工程学院实训室预算表

1	150	2-5	1 50-1	1		318000	318000
2	2 3 4			1	5	228000	228000
3				25		7000	175000
4				30		4800	144000

5		1	228000	228000
6		25	7000	175000
7		30	4800	144000
8	1. 2. 2 1.1-1.2 1.8-1.9 1 :::::220mm ::20mm ::20mm ::20mm 1.2*2 2 2*2.3 48*74 1 32 2 3. 1 1 1 AC220V		358000	358000

			DC110V		
	4.		30kPa—		
	200KPa	e=1.3-3			
					1770000

5.

300 600

1+X

6.

冯建立同志:

《大学生伤害事故预防与处理》获得2009 年度全省高校思想政治教育优秀研究成果三等

中共山东省委宣传部 中共山东省委高校工委

二〇一〇年八月

证书

杨 磊 冯建立 邹秀城 张 媛 同志:

《高职院校思想政治理论课现状调查及分析》 荣获 2010 年度全省教育系统优秀调研成果 三 等奖。 特发此证。

成果名称:高职学生法制教育课程教学创 20 20 在全国"十一五"教育科研先进集体、

先进工作者及优秀成果评选中, 为表彰教

荣誉证书

冯建立同志被评为2013年度山东省社会 科学普及工作先进个人,特此表彰,以资鼓励。

2014/03/21 08:21

第105页

荣誉证书

山东垂輪射賀职业学院 冯建立同志:

您提交给全国教育科研先进个人评选的材料齐备, 经教育 部中国教师发展基金会、教育部《中国职业技术教育》杂志社 组成的专业委员会审核,被评为全国科研先进个人。 特颁此证。

> 教育部中国教师发展基金会 国家教师科研基金管理办公室 《中国职业技术教育》杂志社

证书编号: CIFG115070269

查询网址: 国家教师科基金管理办公室 www.chcci.or

山东软科学优秀成果奖

证书号: RKI1-08-03-271-01

冯建立 研究的《大学生伤害事故预防与处理》 获山东软科学优秀成果 冬等奖,特颁发证书。

荣誉证书

冯建立同志:

《高职院校法制教育课程教学创新与实践研究》获得2011年度全省高校思想政治教育优秀研究成果二等奖。

中共山东省委高校工委

山东省教育厅

二〇一二年九月

荣誉证书

HONORARY CREDENTIAL

This is to certify that Mr/Ms. Feeg Jian L. has successfully coached Wang Xiaogu., the award winner of the Final of the First National English Writing Contest for Technical and Vocational College Students.

Supervisory Committee of ELT in Vocational Higher Education, MOE National English Writing Contest for Technical and Vocational College Students Organization Committee

Issued Date: June 3, 2010

25.建立 老师指导的学生在"首届全国高职高专英语写作大赛"(总决赛)中荣获 多 等奖。 特发此证,以资鼓励。

教育部高等学校高期高专英语类专业教学指导委员会 全国高职高专英语写作大赛组委会 二○一○年六月三日

第107页

民办中职学校师资队伍建设的探索与实践

◆郑 峰 李 郷

1日昭驻海技术学校1

摘要:师老队伍建设水平直接决定了民办中张市校的人才好获增量,是 辛校生存与发展的关键形式因素。本研究认为,民办中联学政治和文 那些"我师的好系为度,并从职前培养,职后培训,推励政策,制度完善的方面出发,提出民办中职中政师青队但建设的改进策略。 美被词: 医含中联学校: 神青狐佐, 报者

作为职业教育的重要组成部分,中职教育曾在培养高素意复 含型的甚重型人才。以演足经济社会快速发展的迫切需要。实现 国家各项事业的稳定与可持续性发展。其中,民办中职学校和资 队伍建设水平均民办中职教育的学校发展前辈、人才培养质量。 社会评价权品的产生深证而又重要的影响。

民办中职学校师资队伍建设的现状分析

性原來以4、20十四年20年26万式旅幣時演足了表面上的数量表表。但无法从根本上地是中职学校教育教学的内在音乐。 高校培业生業難更多的教学理论和教学方法。但往日相有较少的 实践的有一行业专家与政信告相反,他们的社会实践经验非常丰富。但是欠款教学经验。因此、民办中职学校"双释张"教师的 培养与补充迫在简键。

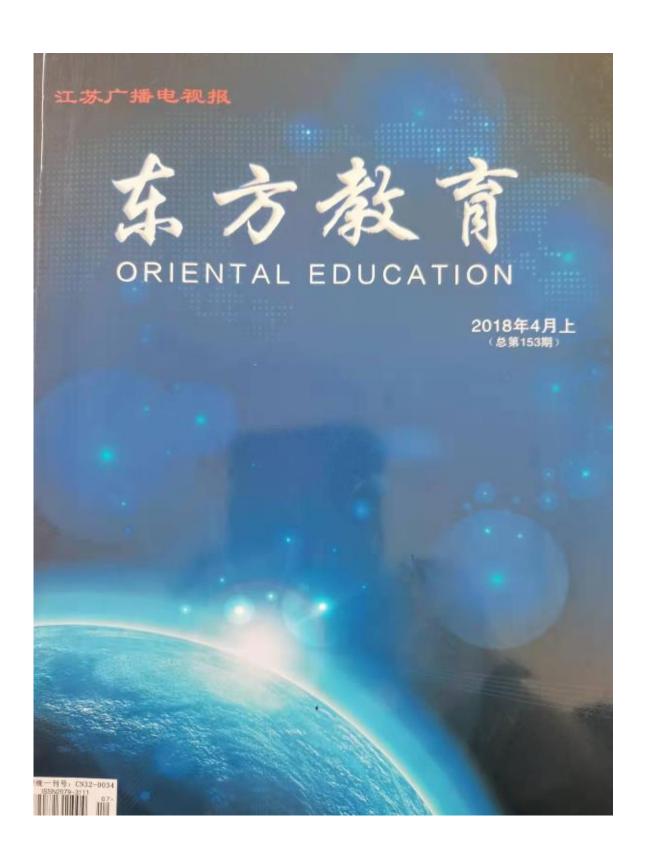
培养与补充迫在指键。
二、民办中职学校房套队伍建设的目标与要求
民办中职学校府资队伍建设要紧紧围绕。双年载"目标展开, 剪数年 方面要具有扎实的理论知识,丰富的数学经验。适切的 数省方法、同时数师也需要与社会查切接领,拥有企业和社会实 数经验。达到"双甲型"要求的民办中职学校均资队伍方能培养 与造就出专业功底深厚。业务能力将落、理论与实致有依整合的 中军学生。国此、相关部门应对此给予足够审视。以"双邦域" 为导向,从职前培养,职后培训、激励政策、制度光普等多方面 出发。提升民办中职学校师资队伍建设的恢复与求撤。 三、民办中职学校师资队伍建设的恢复与实验 车研究主要继续民办中职学校均等队伍的职价培养,职后培 到、微频政策、制度完善四个方面展开,旨在加大"双邦型"教 博的培养力度,提高区办中职教育的人才培养街量、促进区办中 明等等的新型升级,提升民办中职学校请是社会发展需求的能力。

(一)提高期前局养重量 高等微较与行业协会携于其建议办中思学校项资培养的联 会机制。优化设办中职数期的成长环境。具体来说,学校的背子 整件、专业学科带头人包重数程度还知识、教育方法。唯在存实 学生的教学业务能力,企业为学生提供实习实训的良好机会。行 业专案。企业的能工巧匠在此过程中对学生进行实时指导、相实 被逐级劳费给学生、排为混合学生的办子操作能力科技术技能水 严。收全各件的中职被调培券机制有利于学生同时获得学历证 书和职业资格证书。是打造"互师型"以办中取样资从位的创始 环节与关键阶段。 环节与关键阶段

产实践、并对其进行相关业务考核、可以为教师提供积累实践多 檢 更新业务能力的良好契机

三) 宗募相关衡知政策

(三)完育相关激励政策 对相关散励政策进行完善,有利于激发民办中职学校教师尽 学习动机与教育组造,民办中职学校可以通过优质课、公开课、 他体备课等方式,促进中职教师教学水平的提升,同时通过一系 到技能竞赛,为中职教师教学水平的提升,同时通过一系 到技能竞赛,为中职教师者建展示成果,互相学习,共同成长的 发而平台"。同时,针对上述活动中表现优异者, 料定组织的 知政策,在耕资情遇,即位晋升,即称评定等方面对其给于一定 程度的领斜,有出于激发中职数组积极参与。提升自我的意识。 (四)辖立现代职股制度 在确实程序中,实任职教制度主要体理力中职教师的


(四) 键 5 规代申数制度 在确實民伍建设方面,無任职數制度主要体现为中职教师的 推入标准,中取款师管理制度。中职教师评价制度等多个方面, 对中职教师的人职要求。教学任务、套寄符遇。皆月程序、续效 为核等作出明确提明。进一步提升了中职教师的各项能力要求。 整強中职教师在教学能力。按能术半方面不断视升、实现"以师 报"教师的角色转变,为民办中职学校师等以估整体套质及人才 场养质量的提升奠定坚实的制度基础。

四、整轄 总之,民外中职学校印资队伍水平直接决定了中职学生的培养质量和社会公众的满意程度,对中职学校的声音和发展具有重要联制,民外中联学校应将"双种型"教师队伍的培养作为自身发展的中命线与主读律。在适应社会发展需求的过程中不断走向

参考文献:

- [1] 回推着,休龄,杨秀智,中菜联业学校"划新型"即资从压
- 建设特研院JJ,中国联生技术教育,2016/19:04-96. [2]英基文,基于校全合件的中期学校专业排译英队但建设 的实践程况JJ,广西教育:中華教育,2017(26):77-78.
- [3]第小兵,黄阳岩,中联學校洋景區伍建设存在的问题及分析(J),教育現代化-如何,2017(21):268-268.

目录 CONTENTS 主领某事一面。 主任: 李轩 郭树青 采集: 李锋 李汉 王星 王朝 旅齡 方井 致陽 東省: 600-54024131 都稱: 1173-5508-201300-cm 基于未来课堂的教学策略设计的研究 一以《审计实务》为例 以《甲汀大男子方列 基于振德教育视角分析高职学前教育专业学生职业素养福开方法。 刘 警会 培养应用型人才的高校财务管理教学改革研究 舒 宴识 北京是第二部: 正元本的一件: 五任: 於西 新州 京城: 杨阳 茅姓 內因因 王州 祥宗 陈红 また 松花鄉 周堂 田政 李坦 从斯娜李升 松蘭 李永 高阳 李朝 休命 中职学生自我管理能力培养的研究...... 孙卫第章 以"提升职业核心素养"为导向的艺术教育专业《色彩》课程教学 1871年 | 1872年 | 1872 ●第: 010-8993407T **組稿: 7/399937%(kmcwn)** 福 宝宝 美國 科泰特 李明 英辰 新建五 经无处 王禁 基于移动域的 isman 教学平台的应用与研究 赵亚为民民办中联学校师资队伍建设的积级与实效 郑 李 第6 加强教师语言艺术修养 提高高职院校教学质量 朱 琦 朱 章 安 地區: (31)-8(8):6(1) 足職: 张涛 既禮 赵兆 法利 刘泽 刘辉 郭轩 电话: 0710-4605428 超新: patride005@126.pum 教育科研 素质教育背景下的课堂数学评价请研究 采摘: 李科科 高州 石谷 李鑫 方版 加鈴 电话: 8310-3233277 中学语文教育中古典文学教育现状讨论 **回答:** sadmindraceDN.com ----以陕西关中陕南地区为例 唐佳宁 韩小平 李艳花 吳琼霄 赵 毅 肖欣欣 郝明俊 真昕字64 经兴采集团: 用心教育为学生确定幸福人生 刘续星 关 数级文化案例 耶世學 矿 主任: 朱形 車箱: 除権 实用。审美与教化 **国富安总及出**打 一把提小学书法教育的三重特性。 主任 何的 杂類: 作和菜 卷江市 往間 買以 石炭菜 絕际領 唱節: 0871-64174882 中小学德育工作的创新机制研究 常實弄 78 对"全面二孩"政策下我国学前教育发展战略的建议 陈发维 77 工作: 55個 采集: 全國图 省兰 徐明 衛博文 新國國 後年 允许 任榮 李慧 李阳 赵斯: 13914341446(App.com 17字有头海禁: 無杯費 79 第 平 80 信息技术与被育课程的整合研究. #48: 105052610063qq.cren 小学语文教学存在的图惑和解决方法探析...... 电话: 0424-2772787 拨读幼儿科学教学 中学语文朝读教学存在的问题与故迹策略 邓玥沁 82 石家庄家领二朝。 "朝读"课告议... 董保田 84 ≠肝 間飞 电话: 0311-68031697 加坡务工子女数学学习良好习惯培养的几点模法 戴瑟丽 85 论小学语文的高效预习方法 杜杏作 86 南京编辑部: 025-83738717 我社伙授权以上各取采编中心进行非利部外采 小学作文教学之我见 ... 据工作,我社社对义表于各州的相关文章负责,如 作者国发表其他杂志等与各州亚头市道,如是编中 四户生命级,我社不承担任何进劳青恒,特此并 发析数年应有的基本素质 初中语文教学中如何引导学生展开自主探究 高鑫鑫 90 助惠徽 91

(旅游旅游业里) 旅游公共服务 高加量的旅游

对全域旅游政策的评析

邹艳艳 马 波

全域旅游政策提出以后,各级政府都在积 极推进,全域旅游示范区的建设也在进行中, 与此同时,社会各界出现了对其不同角度的批 评。这些批评主要包括以下三个方面;第一, 对曲解"全域旅游"内涵的批评;第二,示范 区建设与国民经济发展水平不匹配;第三,政 府主导发展旅游的模式不可行,对政府在全域 旅游实施中"唱独角戏"现象进行了批评。判 断这些批评是否具有科学性既需要从理论角度 搬入,又需要从中国旅游业的发展实践中进行 分析。

一、"全域旅游"的内涵解读

"全域"不是一个名词,它是由"全"和"域" 两个字组成。汉语词典中对"全"有多个解释, 包括完备、完整、整个、普遍、纯粹、完美等。 "域"也有多个含义,包括地区、区域、范围、 局限等。"全"的含义是僵硬的,也许这就是 为什么有些学者使用"全空间""全要素""全 人员""全管理""全时间""全链条"等缺

全域旅游政策提出以后,各级政府都在积 乏灵活性的理想词汇解读全域旅游的原因。引 语,全域旅游示范区的建设也在进行中, 发了其他学者的批评。

(一)对"全城旅游"意义的由新

1. 全域旅游空间: "村村点大、户户冒细在闸述全域旅游基本内容时。学者们从 "全"字的角度来解释,认为全域旅游就是"全产业""全时间""全人员""全过程""全地域"。例如,魏小安在《全域旅游解析》中认为,全域旅游示范区一定要涉及所有地方,达到空间全域。对印河在《全域旅游、旅游发展战略的再定位》一文中提出。"全域"就是"全部区域",全域旅游就是在一个区域内旅游无处不在,无时不有。

2. 对产业发展的曲解:各产业围线旅游转 德安杰环球旅游顾问集团认为,全域旅游 就是要充分调动各行各业对旅游发展的积极性。 围绕旅游业发展,创新发展业态。北京巅峰碧 业认为,建设全域旅游区需要通过排斥化工业、 钢铁治金业、重型制造业、纺钢业、造纸业、 物流业等重工业来服务旅游业的发展。

[作者简介] 邹艳艳,青岛大学旅游与地理科学学院暗士研究生。研究方向为林群产业发展 马波。 青岛大学旅游与地理科学学院数校,博士。研究方向为林群基础理论。梳游经济与政策。区域旅游 规划和旅游文化学。

3.5.4 教学成果

山东省职业院校信息化教学大赛

获规范书

赵晓利 吴从战 郑峰:

在2016年山东省职业院校信息化教学大赛 中职组 信息 化教学设计比赛中,参赛作品《"险中求生"—船舶遇险 通信》荣获二等奖。

特此表彰, 以资鼓励。

SHANDONG VOCATIONAL SCHOOL INFORMATION TEACHING COMPETITION

3. 6. 1

教学成果

教学成果应用证明

教学成果名称	国际邮轮乘务管理专业
2 F 25 T	实训教学基地建设与应用研究
成果主要完成 单位	日照納海工程职业学院
应用单位及专业	日照远洋运输有限公司
成果应用情况:	日照航海工程职业学院 冯建立教授 负责完成的教学成果"国际邮轮乘务管理专业实调教学基地建设与应用研究"。在我公司邮轮乘务面记
	英语培训以及其他能员英语培训中得到了应用。 该成果把"企业"搬进"校园"进行伤真综合实训,进一步深化产 教融合,符合国家发展战略和产业升级对于航海类专业人才培养的要求。
	该实训基地集产、学、研为一体,促进了企业员工技能水平的提高。 本成果具有很强的可操作性,有很现实的应用价值,在借鉴该成果 成功经验的基础上,结合我公司相关邮轮乘务从业人员技能培训钻湿。
	经过实践有效运行。取得了则被效果。
	2022 年 1月 6日

教学成果应用证明

教学成果名称	国际邮轮乘务管理专业
7	实训教学基地建设与应用研究
成果主要完成 单位	日照航海工程职业学院
应用单位及专业	新加坡 FICC 私人控股有限公司
成果应用情况:	日照航海工程职业学院 冯建立教授 负责完成的教学成果"国际邮轮乘务管理专业实训教学基地建设与应用研究",在我公司邮轮乘务面试英语培训以及其他船员英语培训中得到了应用。 该成果把"企业"搬进"校园"进行仿真综合实训,进一步深化产教融合,符合国家发展战略和产业升级对于航海类专业人才培养的要求;该实训基地集产、学、研为一体,促进了企业员工技能水平的提高。 本成果具有很强的可操作性,有很现实的应用价值,在借鉴该成果成功经验的基础上,结合我公司相关邮轮乘务从业人员技能培训情况,经过实践有效运行,取得了明显效果。
	应用单位 (公章): 2022 年 1月 2 日

教学成果名称	国际邮轮乘务管理专业
成果主要完成	实训教学基地建设与应用研究 日照航海工程职业学院
単位 应用単位及专业	上海亚湾国际酒店管理公司、酒店管理等专业
	日照航海工程职业学院 冯建立教授 负责完成的教学成果 "国际邮轮乘务管理专业实训教学基地建设与应用研究",在我公司的文旅专业人才培养得到了应用。 该成果把"企业"搬进"校园"仿真综合实训模式,进一步深化产教融合,符合国家发展战略和产业升级对于人才培养的要求:该实训基地集产、学、研为一体,有效提高了国际酒店人才技能和英语交流水平。本成果具有很强的可操作性,有很现实的应用价值,在借鉴该成果成功经验的基础上,结合我公司人才培训情况,经过实践有效运行,取得了明显效果。